
DeepCpG Documentation
Release 1.0.3

DeepCpG

Apr 06, 2017

Contents

1 Installation 3

2 Examples 5

3 Documentation 7

4 Indices and tables 9

Python Module Index 31

i

ii

DeepCpG Documentation, Release 1.0.3

DeepCpG1 is a deep neural network for predicting the methylation state of CpG dinucleotides in mul-
tiple cells. It allows to accurately impute incomplete DNA methylation profiles, to discover predic-
tive sequence motifs, and to quantify the effect of sequence mutations. (Angermueller et al, 2017).

Fig. 1: DeepCpG model architecture and applications.
(a) Sparse single-cell CpG profiles as obtained from scBS-seq or scRRBS-seq. Methylated CpG sites are denoted by ones,

unmethylated CpG sites by zeros, and question marks denote CpG sites with unknown methylation state (missing data). (b) DeepCpG
model architecture. The DNA model consists of two convolutional and pooling layers to identify predictive motifs from the local

sequence context, and one fully connected layer to model motif interactions. The CpG model scans the CpG neighborhood of
multiple cells (rows in b), using a bidirectional gated recurrent network (GRU), yielding compressed features in a vector of constant

size. The Joint model learns interactions between higher-level features derived from the DNA- and CpG model to predict methylation
states in all cells. (c, d) The trained DeepCpG model can be used for different downstream analyses, including genome-wide

imputation of missing CpG sites (c) and the discovery of DNA sequence motifs that are associated with DNA methylation levels or
cell-to-cell variability (d).

1 Angermueller, Christof, Heather Lee, Wolf Reik, and Oliver Stegle. Accurate Prediction of Single-Cell DNA Methylation States Using Deep
Learning. http://biorxiv.org/content/early/2017/02/01/055715 bioRxiv, February 1, 2017, 55715. doi:10.1101/055715.

Contents 1

http://biorxiv.org/content/early/2017/02/01/055715
http://biorxiv.org/content/early/2017/02/01/055715

DeepCpG Documentation, Release 1.0.3

2 Contents

CHAPTER 1

Installation

The easiest way to install DeepCpG is to use PyPI:

pip install deepcpg

Alternatively, you can checkout the repository

git clone https://github.com/cangermueller/deepcpg.git

and then install DeepCpG using setup.py:

python setup.py install

3

DeepCpG Documentation, Release 1.0.3

4 Chapter 1. Installation

CHAPTER 2

Examples

Interactive examples on how to use DeepCpG can be found here.

5

https://github.com/cangermueller/deepcpg/tree/master/examples

DeepCpG Documentation, Release 1.0.3

6 Chapter 2. Examples

CHAPTER 3

Documentation

• Data creation – Creating and analyzing data.

• Model training – Training DeepCpG models.

• Model architectures – Description of DeepCpG model architectures.

• Scripts – Documentation of DeepCpG scripts.

• Library – Documentation of DeepCpG library.

7

DeepCpG Documentation, Release 1.0.3

8 Chapter 3. Documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

Data creation

This tutorial describes how to create and analyze the input data of DeepCpG.

Creating data

dcpg_data.py creates the data for model training and evaluation, given multiple methylation profiles:

dcpg_data.py
--cpg_profiles ./cpg/*.tsv
--dna_files mm10/*.dna.*.fa.gz
--cpg_wlen 50
--dna_wlen 1001
--out_dir ./data

--cpg_profiles specifies a list of files that store the observed CpG methylation states for either a bulk- or single-
cell methylation profile. Supports bedGraph and TSV files.

BedGraph files must start with track type=bedGraph. Each following line represents the methylation state of a
CpG site, for example:

track type=bedGraph
chr1 3007532 3007533 1.0
chr1 3007580 3007581 0.4
chr1 3012096 3012097 1.0
chr1 3017509 3017510 0.1

9

DeepCpG Documentation, Release 1.0.3

The columns have the following meaning:

• Column 1: the chromosome of the CpG site starting with chr.

• Column 2: the location of the C of the CpG site. Positions are enumerated starting at one.

• Column 3: the position of the G of the CpG site.

• Column 4: the observed methylation value (∈ (0; 1)) of the CpG site. If all values are binary, i.e. either zero or
one, they will also be stored by DeepCpG as binary values, which reduces disk usage. Continuous values are
required for representing hemi-methylation or bulk methylation profiles.

TSV files do not start with a track column and only contain three columns, for example:

chr1 3007532 1.0
chr1 3007580 0.4
chr1 3012096 1.0
chr1 3017509 0.1

--cpg_profiles files can be gzip-compressed (*.gz) to reduce disk usage.

--dna_files specifies a list of FASTA files, where each file stores the DNA sequence of a particular chromosome.
Files can be downloaded from Ensembl, e.g. mm10 for mouse or hg38 for human, and specified either via a glob pat-
tern, e.g. --dna_files mm10/*.dna.*fa.gz or simply by the directory name, e.g. --dna_files mm10.
The argument --dna_files is not required for imputing methylation states from neighboring methylation states
without using the DNA sequence.

--cpg_wlen specifies the sum of CpG sites to the left and right of the target site that DeepCpG will use for mak-
ing predictions. For example, DeepCpG will use 25 CpG sites to the left and right of the target CpG site using
--cpg_wlen 50. A value of about 50 usually covers a wide methylation context and is sufficient to achieve a good
performance. If you are dealing with many cells, I recommend using a smaller value to reduce disk usage.

--dna_wlen specifies the width of DNA sequence windows in base pairs that are centered on the target CpG
site. Wider windows usually improve prediction accuracy but increase compute- and storage costs. I recommend
--dna_wlen 1001.

These are the most important arguments for imputing methylation profiles. dcpg_data.py provides additional ar-
guments for debugging and predicting statistics across profiles, e.g. the mean methylation rate or cell-to-cell variance.

Debugging

For debugging, testing, or reducing compute costs, --chromos can be used the select certain chromo-
somes. --nb_sample_chromo randomly samples a certain number of CpG sites from each chromosome, and
--nb_sample specifies the maximum number of CpG sites in total.

Predicting statistics

For predicting statistics across methylation profiles, --stats and --win_stats can be used. These arguments
specify a list of statistics that are computed across profiles for either a single CpG site or in a window of size
--win_stats_wlen that is centered on a target CpG site. Following statistics are supported:

• mean: the mean methylation rate.

• mode: the mode of methylation rates.

• var: the cell-to-cell variance.

• cat_var: three categories of cell-to-cell variance, i.e. low, medium, or high variance.

• cat2_var: two categories of cell-to-cell variance, i.e. low or high variance.

10 Chapter 4. Indices and tables

http://www.ensembl.org/info/data/ftp/index.html
http://ftp.ensembl.org/pub/release-85/fasta/mus_musculus/dna/
http://ftp.ensembl.org/pub/release-86/fasta/homo_sapiens/dna/

DeepCpG Documentation, Release 1.0.3

• entropy: the entropy across cells.

• diff: if a CpG site is differentially methylated, i.e. methylated in one profile but zero in others.

• cov: the CpG coverage, i.e. the number of profiles for which the methylation state of the target CpG site is
observed.

Statistics are only computed or CpG sites that are covered by at least --stats_cov (default 1) cells. Increasing
--stats_cov will lead to more robust estimates.

Common issues

Why am I getting warnings ‘No CpG site at position X!’ when using ‘‘dcpg_data.py‘‘?

This means that some sites in --cpg_profile files are not CpG sites, i.e. there is no CG dinucleotide at the
given position in the DNA sequence. Make sure that --dna_files point to the correct genome and CpG sites are
correctly aligned. Since DeepCpG currently does not support allele-specific methylation, data from different alleles
must be merged (recommended) or only one allele be used.

Computing data statistics

dcpg_data_stats.py enables to compute statistics for a list of DeepCpG input files:

dcpg_data_stats.py ./data/c1_000000-001000.h5 ./data/c13_000000-001000.h5

output nb_tot nb_obs frac_obs mean var
0 cpg/BS27_1_SER 2000 391 0.1955 0.790281 0.165737
1 cpg/BS27_3_SER 2000 408 0.2040 0.740196 0.192306
2 cpg/BS27_5_SER 2000 393 0.1965 0.692112 0.213093
3 cpg/BS27_6_SER 2000 402 0.2010 0.666667 0.222222
4 cpg/BS27_8_SER 2000 408 0.2040 0.776961 0.173293

The columns have the following meaning:

• output: The name of the target cell.

• nb_tot: The total number of CpG sites.

• nb_obs: The number of CpG sites for which the true label of output is observed.

• frac_obs: The fraction nb_obs/nb_tot of observed CpG sites.

• mean: The mean of output, e.g. the mean methylation rate.

• var: The variance of output, e.g. the variance in CpG methylation levels.

--nb_tot and --nb_obs are particularly useful for deciding how to split the data into a training, test, validation
set as explained in the training tutorial. Statistics can be written to a TSV file using --out_tsv and be visualized
using --out_plot.

Printing data

dcpg_data_show.py enables to selectively print the content of a list of DeepCpG data files. Using --outputs
prints all DeepCpG model outputs in a selected region:

dcpg_data_show.py ./data/c1_000000-001000.h5 --chromo 1 --start 189118909 --end
→˓189867450 --outputs

4.1. Data creation 11

DeepCpG Documentation, Release 1.0.3

loc outputs
chromo pos cpg/BS27_1_SER cpg/BS27_3_SER cpg/BS27_5_SER cpg/BS27_6_SER cpg/

→˓BS27_8_SER
950 1 189118909 -1 -1 1 -1
→˓ -1
951 1 189314906 -1 -1 1 -1
→˓ -1
952 1 189506185 1 -1 -1 -1
→˓ -1
953 1 189688256 -1 0 -1 -1
→˓ -1
954 1 189688274 -1 -1 -1 -1
→˓ 0
955 1 189699529 -1 -1 -1 1
→˓ -1
956 1 189728263 -1 -1 0 -1
→˓ -1
957 1 189741539 -1 1 -1 -1
→˓ -1
958 1 189850865 -1 -1 -1 1
→˓ -1
959 1 189867450 -1 1 -1 -1
→˓ -1

-1 indicates unobserved methylation states. If --outputs is followed by a list of output names, only they will be
printed. The arguments --cpg, --cpg_wlen, and --cpg_dist control how many (--cpg_wlen) neighboring
methylation states (--cpg) and corresponding distances (--cpg_dist) are printed. For example, the following
commands prints the state and distance of four neighboring CpG sites of cell BS27_1_SER:

dcpg_data_show.py ./data/c1_000000-001000.h5 --chromo 1 --start 189118909 --end
→˓189867450 --outputs cpg/BS27_1_SER --cpg BS27_1_SER --cpg_wlen 4 --cpg_dist

loc outputs BS27_1_SER/state BS27_1_SER/dist
chromo pos cpg/BS27_1_SER -2 -1 +1 +2 -2

→˓-1 +1 +2
950 1 189118909 -1 1 1 1 1 84023.0
→˓65557.0 114153.0 373437.0
951 1 189314906 -1 1 1 1 1 261554.0
→˓81844.0 177440.0 191279.0
952 1 189506185 1 1 1 1 0 273123.0
→˓13839.0 162360.0 662239.0
953 1 189688256 -1 1 1 0 1 182071.0
→˓19711.0 480168.0 705968.0
954 1 189688274 -1 1 1 0 1 182089.0
→˓19729.0 480150.0 705950.0
955 1 189699529 -1 1 1 0 1 193344.0
→˓30984.0 468895.0 694695.0
956 1 189728263 -1 1 1 0 1 222078.0
→˓59718.0 440161.0 665961.0
957 1 189741539 -1 1 1 0 1 235354.0
→˓72994.0 426885.0 652685.0
958 1 189850865 -1 1 1 0 1 344680.0
→˓182320.0 317559.0 543359.0
959 1 189867450 -1 1 1 0 1 361265.0
→˓198905.0 300974.0 526774.0

Analogously, --dna_wlen prints the DNA sequence window of that length centered on the target CpG sites:

12 Chapter 4. Indices and tables

DeepCpG Documentation, Release 1.0.3

dcpg_data_show.py ./data/c1_000000-001000.h5 --chromo 1 --start 189118909 --end
→˓189867450 --outputs cpg/BS27_1_SER --dna_wlen 11

loc outputs dna
chromo pos cpg/BS27_1_SER -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

950 1 189118909 -1 2 1 0 0 0 3 2 2 0 0 3
951 1 189314906 -1 3 1 3 3 2 3 2 3 0 1 3
952 1 189506185 1 0 3 3 3 0 3 2 2 2 0 1
953 1 189688256 -1 2 3 3 2 2 3 2 2 3 2 2
954 1 189688274 -1 2 3 0 2 0 3 2 1 3 2 2
955 1 189699529 -1 2 3 2 2 0 3 2 3 1 1 1
956 1 189728263 -1 3 1 3 3 3 3 2 2 3 3 2
957 1 189741539 -1 2 0 2 1 2 3 2 1 2 2 3
958 1 189850865 -1 2 2 3 2 2 3 2 2 3 2 2
959 1 189867450 -1 3 1 3 0 3 3 2 1 2 3 0

With --out_hdf, the selected data can be stored as Pandas data frame to a HDF5 file.

Model training

Here you can find information about how to train DeepCpG models.

Splitting data into training, validation, and test set

For comparing different models, it is necessary to train, select hyper-parameters, and test models on distinct data. In
holdout validation, the dataset is split into a training set (~60% of the data), validation set (~20% of the data), and test
set (~20% of the data). Models are trained on the training set, hyper-parameters selected on the validation set, and the
selected models compared on the test set. For example, you could use chromosome 1-5, 7, 9, 11, 13 as training set,
chromosome 14-19 as validation set, and chromosome 6, 8, 10, 12, 14 as test set:

train_files="$data_dir/c{1,2,3,4,5,7,9,11,13}_*.h5
val_files="$data_dir/c{14,15,16,17,18,19}_*.h5"
test_files="$data_dir/c{6,8,10,12,14}_*.h5"

dcpg_train.py
$train_files
--val_file $val_files
...

As you can see, DeepCpG allows to easily split the data by glob patterns. You do not have to split the dataset by
chromosomes. For example, you could use train_files=$data_Dir/c*_[01].h5 to select all data files
starting with index 0 or 1 for training, and use the remaining files for validation.

If you are not concerned about comparing DeepCpG with other models, you do not need a test set. In this case, you
could, for example, leave out chromosome 14-19 as validation set, and use the remaining chromosomes for training.

If your data were generated using whole-genome scBS-seq, then the number of CpG sites on few chromosomes is
usually already sufficient for training. For example, chromosome 1, 3, and 5 from Smallwood et al (2014) cover
already more than 3 million CpG sites. I found about 3 million CpG sites as sufficient for training models without
overfitting. However, if you are working with scRRBS-seq data, you probably need more chromosomes for training.
To check how many CpG sites are stored in a set of DeepCpG data files, you can use the dcpg_data_stats.py.
The following command will compute different statistics for the training set, including the number number of CpG
sites:

4.2. Model training 13

http://pandas.pydata.org/pandas-docs/stable/io.html#io-hdf5

DeepCpG Documentation, Release 1.0.3

dcpg_data_stats.py $data_dir/$train_files

#################################
dcpg_data_stats.py ./data/c19_000000-032768.h5 ./data/c19_032768-050000.h5
#################################

output nb_tot nb_obs frac_obs mean var
0 cpg/BS27_1_SER 50000 20621 0.41242 0.665972 0.222453
1 cpg/BS27_3_SER 50000 13488 0.26976 0.573102 0.244656
2 cpg/BS27_5_SER 50000 25748 0.51496 0.529633 0.249122
3 cpg/BS27_6_SER 50000 17618 0.35236 0.508117 0.249934
4 cpg/BS27_8_SER 50000 16998 0.33996 0.661019 0.224073

For each output cell, nb_tot is the total number of CpG sites, nb_obs the number of CpG sites with known
methylation state, frac_obs the ratio between nb_obs and nb_tot, mean the mean methylation rate, and var
the variance of the methylation rate.

Training DeepCpG models jointly

As described in Angermueller et al (2017), DeepCpG consists of a DNA, CpG, and Joint model. The DNA model
recognizes features in the DNA sequence window that is centered on a target site, the CpG model recognizes features
in observed neighboring methylation states of multiple cells, and the Joint model integrates features from the DNA
and CpG model and predicts the methylation state of all cells.

The easiest way is to train all models jointly:

dcpg_train.py
$train_files
--val_files $val_files
--dna_model CnnL2h128
--cpg_model RnnL1
--out_dir $models_dir/joint
--nb_epoch 30

--dna_model, --cpg_model, and --joint_model specify the architecture of the DNA, CpG, and Joint
model, respectively, which are described in here <./models.rst>_.

Training DeepCpG models separately

Although it is convenient to train all models jointly by running only a single command as described above, I suggest to
train models separately. First, because it enables to train the DNA and CpG model in parallel on separate machines and
thereby to reduce the training time. Second, it enables to compare how predictive the DNA model is relative to CpG
model. If you think the CpG model is already accurate enough alone, you might not need the DNA model. Thirdly, I
obtained better results by training the models separately. However, this may not be true for your particular dataset.

You can train the CpG model separately by only using the --cpg_model argument, but not --dna_model:

dcpg_train.py
$train_files
--val_files $val_files
--dna_model CnnL2h128
--out_dir $models_dir/dna
--nb_epoch 30

You can train the DNA model separately by only using --dna_model:

14 Chapter 4. Indices and tables

http://biorxiv.org/content/early/2017/02/01/055715

DeepCpG Documentation, Release 1.0.3

dcpg_train.py
$train_files
--val_files $val_files
--cpg_model RnnL1
--out_dir $models_dir/cpg
--nb_epoch 30

After training the CpG and DNA model, we are joining them by specifying the name of the Joint model with
--joint_model:

dcpg_train.py
$train_files
--val_files $val_files
--dna_model $models_dir/dna
--cpg_model $models_dir/cpg
--joint_model JointL2h512
--out_dir $models_dir/joint
--nb_epoch 10

--dna_model and --cpg_model point to the output training directory of the DNA and CpG model, respectively,
which contains their specification and weights:

ls $models_dir/dna

events.out.tfevents.1488213772.lawrence model.json
lc_train.csv model_weights_train.h5
lc_val.csv model_weights_val.h5
model.h5

model.json is the specification of the trained model, model_weights_train.h5 the weights with the best
performance on the training set, and model_weights_val.h5 the weights with the best performance on the
validation set. --dna_model ./dna is equivalent to using --dna_model ./dna/model.json ./dna/
model_weights_val.h5, i.e. the validation weights will be used. The training weights can be used by
--dna_model ./dna/model.json ./dna/model_weights_train.h5

In the command above, we used --joint_only to only train the parameters of the Joint model without training the
pre-trained DNA and CpG model. Although the --joint_only arguments reduces training time, you might obtain
better results by also fine-tuning the parameters of the DNA and CpG model without using --joint_only:

Monitoring training progress

To check if your model is training correctly, you should monitor the training and validation loss. DeepCpG prints the
loss and performance metrics for each output to the console as you can see from the previous commands. loss is the
loss on the training set, val_loss the loss on the validation set, and cpg/X_acc, is, for example, the accuracy for
output cell X. DeepCpG also stores these metrics in X.csv in the training output directory.

Both the training loss and validation loss should continually decrease until saturation. If at some point the validation
loss starts to increase while the training loss is still decreasing, your model is overfitting the training set and you should
stop training. DeepCpG will automatically stop training if the validation loss does not increase over the number of
epochs that is specified by --early_stopping (by default 5). If your model is overfitting already after few epochs,
your training set might be to small, and you could try to regularize your model model by choosing a higher value for
--dropout or --l2_decay.

If your training loss fluctuates or increases, then you should decrease the learning rate. For more information on
interpreting learning curves I recommend this tutorial.

4.2. Model training 15

DeepCpG Documentation, Release 1.0.3

To stop training before reaching the number of epochs specified by --nb_epoch, you can create a stop file (default
name STOP) in the training output directory with touch STOP.

Watching numeric console outputs is not particular user friendly. TensorBoard provides a more convenient and visually
appealing way to mointor training. You can use TensorBoard provided that you are using the Tensorflow backend.
Simply go to the training output directory and run tensorboard --logdir ..

Deciding how long to train

The arguments --nb_epoch and --early_stopping control how long models are trained.

--nb_epoch defines the maximum number of training epochs (default 30). After one epoch, the model has seen the
entire training set once. The time per epoch hence depends on the size of the training set, but also on the complexity
of the model that you are training and the hardware of your machine. On a large dataset, you have to train for fewer
epochs than on a small dataset, since your model will have seen already a lot of training samples after one epoch. For
training on about 3,000,000 samples, good default values are 20 for the DNA and CpG model, and 10 for the Joint
model.

Early stopping stops training if the loss on the validation set did not improve after the number of epochs that is specified
by --early_stopping (default 5). If you are training without specifying a validation set with --val_files,
early stopping will be deactivated.

--max_time sets the maximum training time in hours. This guarantees that training terminates after a certain amount
of time regardless of the --nb_epoch or --early_stopping argument.

--stop_file defines the path of a file that, if it exists, stop training after the end of the current epoch. This
is useful if you are monitoring training and want to terminate training manually as soon as the training loss starts
to saturate regardless of --nb_epoch or --early_stopping. For example, when using --stop_file ./
train/STOP, you can create an empty file with touch ./train/STOP to stop training at the end of the current
epoch.

Optimizing hyper-parameters

DeepCpG has different hyper-parameters, such as the learning rate, dropout rate, or model architectures. Although the
performance of DeepCpG is relatively robust to different hyper-parameters, you can tweak performances by trying out
different parameter combinations. For example, you could train different models with different parameters on a subset
of your data, select the parameters with the highest performance on the validation set, and then train the full model.

The following hyper-parameters are most important (default values shown): 1. Learning rate: --learning_rate
0.0001 2. Dropout rate: --dropout 0.0 3. DNA model architecture: --dna_model CnnL2h128 4. Joint
model architecture: --joint_model JointL2h512 5. CpG model architecture: --cpg_model RnnL1 6. L2
weight decay: --l2_decay 0.0001

The learning rate defines how aggressively model parameters are updated during training. If the training loss changes
only slowly, you could try increasing the learning rate. If your model is overfitting of if the training loss fluctuates,
you should decrease the learning rate. Reasonable values are 0.001, 0.0005, 0.0001, 0.00001, or values in between.

The dropout rate defines how strongly your model is regularized. If you have only few data and your model is
overfitting, then you should increase the dropout rate. Reasonable values are, e.g., 0.0, 0.2, 0.4.

DeepCpG provides different architectures for the DNA, CpG, and joint model. Architectures are more or less complex,
depending on how many layers and neurons say have. More complex model might yield better performances, but take
longer to train and might overfit your data. You can find more information about available model architecture here.

L2 weight decay is an alternative to dropout for regularizing model training. If your model is overfitting, you might
try 0.001, or 0.005.

16 Chapter 4. Indices and tables

https://www.tensorflow.org/get_started/summaries_and_tensorboard

DeepCpG Documentation, Release 1.0.3

Testing training

dcpg_train.py provides different arguments that allow to briefly test training before training the full model for a
about a day.

--nb_train_sample and --nb_val_sample specify the number of training and validation samples. When
using --nb_train_sample 500, the training loss should briefly decay and your model should start overfitting.

--nb_output and --output_names define the maximum number and the name of model outputs. For exam-
ple, --nb_output 3 will train only on the first three outputs, and --output_names cpg/.*SER.* only on
outputs that include ‘SER’ in their name.

Analogously, --nb_replicate and --replicate_name define the number and name of cells that are used as
input to the CpG model. --nb_replicate 3 will only use observed methylation states from the first three cells,
and allows to briefly test the CpG model.

--dna_wlen specifies the size of DNA sequence windows that will be used as input to the DNA model. For example,
--dna_wlen 101 will train only on windows of size 101, instead of using the full window length that was specified
when creating data files with dcpg_data.py.

Analogously, --cpg_wlen specifies the sum of the number of observed CpG sites to the left and the right of the
target CpG site for training the CpG model. For example, --cpg_wlen 10 will use 5 observed CpG sites to the left
and to the right.

Fine-tuning and training selected components

dcpg_train.py provides different arguments that allow to selectively train only some components of a model.

With --fine_tune, only the output layer will be trained. As the name implies, this argument is useful for fine-
tuning a pre-trained model.

--train_models specifies which models are trained. For example, --train_models joint will train the
Joint model, but not the DNA and CpG model. --train_models cpg joint will train the CpG and Joint
model, but not the DNA model.

--trainable and --not_trainable allow including and excluding certain layers. For example,
--not_trainable '.*' --trainable 'dna/.*_2' will only train the second layers of the DNA model.

--freeze_filter excludes the first convolutional layer of the DNA model from training.

Configuring the Keras backend

DeepCpG use the Keras deep learning library, which supports Theano or Tensorflow as backend. While Theano has
long been the dominant deep learning library, Tensorflow is more suited for parallelizing computations on multiple
GPUs and CPUs, and provides TensorBoard to interactively monitor training.

You can configure the backend by setting the backend attribute in ~/.keras/keras.json to tensorflow or
theano. Alternatively you can set the environemnt variable KERAS_BACKEND='tensorflow' to use Tensor-
flow, or KERAS_BACKEND='theano' to use Theano.

You can find more information about Keras backends here.

Model architectures

DeepCpG consists of a DNA model to recognize features in the DNA sequence, a CpG model to recognize features
in the methylation neighborhood of multiple cells, and a Joint model to combine the features from the DNA and CpG

4.3. Model architectures 17

https://keras.io
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://www.tensorflow.org/get_started/summaries_and_tensorboard
https://keras.io/backend/

DeepCpG Documentation, Release 1.0.3

model.

DeepCpG provides different architectures for the DNA, CpG, and joint model. Architectures differ in the number
of layers and neurons, and are hence more or less complex. More complex models are usually more accurate,
but more expensive to train. You can select a certain architecture using the --dna_model, --cpg_model, and
--joint_model argument of dcpg_train.py, for example:

dcpg_train.py
--dna_model CnnL2h128
--cpg_model RnnL1
--joint_model JointL2h512

In the following, the following layer specifications will be used:

Specification Description
conv[x@y] Convolutional layer with x filters of size y
mp[x] Max-pooling layer with size x
fc[x] Full-connected layer with x units
do Dropout layer
bgru[x] Bidirectional GRU with x units
gap Global average pooling layer
resb[x,y,z] Residual network with three bottleneck residual units of size x, y, z
resc[x,y,z] Residual network with three convolutional residual units of size x, y, z
resa[x,y,z] Residual network with three Atrous residual units of size x, y, z

DNA model architectures

Name Parameters Specification
CnnL1h128 4,100,000 conv[128@11]_mp[4]_fc[128]_do
CnnL1h256 8,100,000 conv[128@11]_mp[4]_fc[256]_do
CnnL2h128 4,100,000 conv[128@11]_mp[4]_conv[256@3]_mp[2]_fc[128]_do
CnnL2h256 8,100,000 conv[128@11]_mp[4]_conv[256@3]_mp[2]_fc[256]_do
CnnL3h128 4,400,000 conv[128@11]_mp[4]_conv[256@3]_mp[2]_conv[512@3]_mp[2]_fc[128]_do
CnnL3h256 8,300,000 conv[128@11]_mp[4]_conv[256@3]_mp[2]_conv[512@3]_mp[2]_fc[128]_do
CnnRnn01 1,100,000 conv[128@11]_pool[4]_conv[256@7]_pool[4]_bgru[256]_do
ResNet01 1,700,000 conv[128@11]_mp[2]_resb[2x128|2x256|2x512|1x1024]_gap_do
ResNet02 2,000,000 conv[128@11]_mp[2]_resb[3x128|3x256|3x512|1x1024]_gap_do
ResConv01 2,800,000 conv[128@11]_mp[2]_resc[2x128|1x256|1x256|1x512]_gap_do
ResAtrous01 2,000,000 conv[128@11]_mp[2]_resa[3x128|3x256|3x512|1x1024]_gap_do

Th prefixes Cnn, CnnRnn, ResNet, ResConv, and ResAtrous denote the class of the DNA model.

Models starting with Cnn are convolutional neural networks (CNNs). DeepCpG CNN architectures consist of a
series of convolutional and max-pooling layers, which are followed by one fully-connected layer. Model CnnLxhy
has x convolutional-pooling layers, and one fully-connected layer with y units. For example, CnnL2h128 has two
convolutional layers, and one fully-connected layer with 128 units. CnnL3h256 has three convolutional layers and
one fully-connected layer with 256 units. CnnL1h128 is the fastest model, but models with more layers and neurons
usually perform better. In my experiments, CnnL2h128 provided a good trade-off between performance and runtime,
which I recommend as default.

CnnRnn01 is a convolutional-recurrent neural network. It consists of two convolutional-pooling layers, which are fol-
lowed by a bidirectional recurrent neural network (RNN) with one layer and gated recurrent units (GRUs). CnnRnn01
is slower than Cnn architectures and did not perform better in my experiments.

Models starting with ResNet are residual neural networks. ResNets are very deep networks with skip connections
to improve the gradient flow and to allow learning how many layers to use. A residual network consists of multiple

18 Chapter 4. Indices and tables

http://nar.oxfordjournals.org/content/44/11/e107
https://arxiv.org/abs/1603.05027

DeepCpG Documentation, Release 1.0.3

residual blocks, and each residual block consists of multiple residual units. Residual units have a bottleneck archi-
tecture with three convolutional layers to speed up computations. ResNet01 and ResNet02 have three residual
blocks with two and three residual units, respectively. ResNets are slower than CNNs, but can perform better on large
datasets.

Models starting with ResConv are ResNets with modified residual units that have two convolutional layers instead of
a bottleneck architecture. ResConv models performed worse than ResNet models in my experiments.

Models starting with ResAtrous are ResNets with modified residual units that use Atrous convolutional layers
instead of normal convolutional layers. Atrous convolutional layers have dilated filters, i.e. filters with ‘holes’, which
allow scanning wider regions in the inputs sequence and thereby better capturing distant patters in the DNA sequence.
However, ResAtrous models performed worse than ResNet models in my experiments

CpG model architectures

Name Parameters Specification
FcAvg 54,000 fc[512]_gap
RnnL1 810,000 fc[256]_bgru[256]_do
RnnL2 1,100,000 fc[256]_bgru[128]_bgru[256]_do

FcAvg is a lightweight model with only 54000 parameters, which first transforms observed neighboring CpG sites
of all cells independently, and than averages the transformed features across cells. FcAvg is very fast, but performs
worse than RNN models.

Rnn models consists of bidirectional recurrent neural networks (RNNs) with gated recurrent units (GRUs) to sum-
marize the methylation neighborhood of cells in a more clever way than averaging. RnnL1 consists of one fully-
connected layer with 256 units to transform the methylation neighborhood of each cell independently, and one bidi-
rectional GRU with 2x256 units to summarize the transformed methylation neighborhood of cells. RnnL2 has two
instead of one GRU layer. RnnL1 is faster and performed as good as RnnL2 in my experiments.

Joint model architectures

Name Parameters Specification
JointL0 0
JointL1h512 524,000 fc[512]
JointL2h512 786,000 fc[512]_fc[512]
JointL3h512 1,000,000 fc[512]_fc[512]_fc[512]

Joint models join the feature from the DNA and CpG model. JointL0 simply concatenates the features and has no
learnable parameters (ultra fast). JointLXh512 has X fully-connect layers with 512 neurons. Models with more
layers usually perform better, at the cost of a higher runtime. I recommend using JointL2h512 or JointL3h12.

Scripts

Documentation of DeepCpG scripts.

dcpg_data.py

Create DeepCpG input data from incomplete methylation profiles.

4.4. Scripts 19

http://arxiv.org/abs/1511.07122

DeepCpG Documentation, Release 1.0.3

Takes as input incomplete CpG methylation profiles of multiple cells, extracts neighboring CpG sites and/or DNA
sequences windows, and writes data chunk files to output directory. Output data can than be used for model training
using dcpg_train.py model evaluation using dcpg_eval.py.

Examples

Create data files for training a CpG and DNA model, using 50 neighboring methylation states and DNA sequence
windows of 1001 bp from the mm10 genome build:

dcpg_data.py
--cpg_profiles ./cpg/*.tsv
--cpg_wlen 50
--dna_files ./mm10
--dna_wlen 1001
--out_dir ./data

Create data files from gzip-compressed bedGraph files for predicting the mean methylation rate and cell-to-cell vari-
ance from the DNA sequence:

dcpg_data.py
--cpg_profiles ./cpg/*.bedGraph.gz
--dna_files ./mm10
--dna_wlen 1001
--win_stats mean var
--win_stats_wlen 1001 2001 3001 4001 5001
--out_dir ./data

See Also

• dcpg_data_stats.py: For computing statistics of data files.

• dcpg_data_show.py: For showing the content of data files.

• dcpg_train.py: For training a model.

scripts.dcpg_data.extract_seq_windows(seq, pos, wlen, seq_index=1, assert_cpg=False)
Extracts DNA sequence windows at positions.

seq: DNA sequence string pos: Array with positions at which windows are extracted wlen: Window length
seq_index: Minimum positions. Set to 0 if positions in pos start at 0

instead of 1

cpg_sites: Check if positions in pos point to CpG sites

scripts.dcpg_data.map_cpg_tables(cpg_tables, chromo, chromo_pos)
Maps values from cpg_tables to chromo_pos.

Positions in cpg_tables for chromo must be a subset of chromo_pos. Inserts dat.CPG_NAN for uncovered
positions.

scripts.dcpg_data.map_values(values, pos, target_pos, dtype=None, nan=-1)
Maps values array at positions pos to target_pos.

Inserts nan for uncovered positions.

scripts.dcpg_data.prepro_pos_table(pos_tables)
Extracts unique positions and sorts them.

20 Chapter 4. Indices and tables

DeepCpG Documentation, Release 1.0.3

scripts.dcpg_data.read_cpg_profiles(filenames, log=None, *args, **kwargs)
Read methylation profiles.

Input files can be gzip compressed.

dict (key, value), where key is the output name and value the CpG table.

scripts.dcpg_data.split_ext(filename)
Remove file extension from filename.

dcpg_data_show.py

Show the content of DeepCpG data files.

Shows the content of dcpg_data.py output files for a selected region, for example the methylation state of the
target CpG site, neighboring CpG sites, or the DNA sequence.

Examples

Show the output methylation state of CpG sites on on chromosome 19 between position 3028955 and 3079682:

dcpg_data_show.py
./data/*.h5
--chromo 1
--start 3028955
--end 3079682
--outputs

Show output methylation states and the state as well as the distance of 10 neighboring CpG sites of cell BS27_1_SER:

dcpg_data_show.py
./data/*.h5
--chromo 1
--start 3028955
--end 3079682
--outputs cpg/BS27_1_SER
--cpg BS27_1_SER
--cpg_wlen 10
--cpg_dist

Show output methylation states and DNA sequence windows of length 11 and store the results in HDF5 file
selected.h5:

dcpg_data_show.py
./data/*.h5
--chromo 1
--start 3028955
--end 3079682
--outputs
--dna_wlen 11
--out_hdf selected.h5

dcpg_data_stats.py

Compute summary statistics of data files.

4.4. Scripts 21

DeepCpG Documentation, Release 1.0.3

Computes summary statistics of data files such as the number of samples or the mean and variance of output variables.

Examples

dcpg_data_stats.py
./data/*.h5

dcpg_download.py

Download a pre-trained model from DeepCpG model zoo.

Downloads a pre-trained model from the DeepCpG model zoo by its identifier. Model descriptions can be found on
online.

Examples

Show available models:

dcpg_download --show

Download DNA model trained on serum cells from Smallwood et al:

dcpg_download.py
Smallwood2014_serum_dna
-o ./model

dcpg_eval.py

Evaluate the prediction performance of a DeepCpG model.

Imputes missing methylation states and evaluates model on observed states. --out_report will write evaluation
metrics to a TSV file using. --out_data will write predicted and observed methylation state to a HDF5 file with
following structure:

• chromo: The chromosome of the CpG site.

• pos: The position of the CpG site on the chromosome.

• outputs: The input methylation state of each cell and CpG site, which can either observed or missing (-1).

• preds: The predicted methylation state of each cell and CpG site.

Examples

dcpg_eval.py
./data/*.h5
--model_files ./model
--out_data ./eval/data.h5
--out_report ./eval/report.tsv

22 Chapter 4. Indices and tables

DeepCpG Documentation, Release 1.0.3

dcpg_eval_export.py

Export imputed methylation profiles.

Exports imputed methylation profiles from dcpg_eval.py output file to different data formats. Outputs for each CpG
site and cell either the experimentally observed or predicted methylation state depending on whether or not the methy-
lation state was observed in the input file or not, respectively. Creates for each methylation profile one file in the output
directory.

Examples

Export profiles of all cells as HDF5 files to ./eval:

dcpg_eval_export.py
./eval/data.h5
--out_dir ./eval

Export the profile of cell Ca01 for chromosomes 4 and 5 to a bedGraph file:

dcpg_eval_export.py
./eval/data.h5
--output cpg/Ca01
--chromo 4 5
--format bedGraph
--out_dir ./eval

dcpg_filter_act.py

Compute filter activations of a DeepCpG model.

Computes the activation of the filters of the first convolutional layer for a given DNA model. The resulting activations
can be used to visualize and cluster motifs, or correlated with model outputs.

Examples

Compute activations in 25000 sequence windows and also store DNA sequences. For example to visualize motifs.

dcpg_filter_act.py
./data/*.h5
--model_files ./models/dna
--out_file ./activations.h5
--nb_sample 25000
--store_inputs

Compute the weighted mean activation in each sequence window and also store model predictions. For example to
cluster motifs or to correlated mean motif activations with model predictions.

dcpg_filter_act.py
./data/*.h5
--model_files ./models/dna
--out_file ./activations.h5
--act_fun wmean

4.4. Scripts 23

DeepCpG Documentation, Release 1.0.3

See Also

• dcpg_filter_motifs.py: For motif visualization and analysis.

dcpg_filter_motifs.py

Visualizes and analyzes filter motifs.

Enables to visualize motifs as sequence logos, compare motifs to annotated motifs, cluster motifs, and compute motif
summary statistics. Requires Weblogo3 for visualization, and Tomtom for motif comparison.

Copyright (c) 2015 David Kelley since since parts of the code are based on the Basset script basset_motifs.py
from David Kelley.

Examples

Compute filter activations and also store input DNA sequence windows:

dcpg_filter_act.py
./data/*.h5
--out_file ./activations.h5
--store_inputs
--nb_sample 100000

Visualize and analyze motifs:

dcpg_filter_motifs.py
./activations.h5
--out_dir ./motifs
--motif_db ./motif_databases/CIS-BP/Mus_musculus.meme
--plot_heat
--plot_dens
--plot_pca

dcpg_train.py

Train a DeepCpG model to predict DNA methylation.

Trains a DeepCpG model on DNA (DNA model), neighboring methylation states (CpG model), or both (Joint model)
to predict CpG methylation of multiple cells. Allows to fine-tune individual models or to train them from scratch.

Examples

Train a DNA model on chromosome 1, 3, and 5, and use chromosome 13, 14, and 15 for validation:

dcpg_train.py
./data/c{1,3,5}_*.h5
--val_files ./data/c{13,14,15}_*.h5
--dna_model CnnL2h128
--out_dir ./models/dna

Train a CpG model:

24 Chapter 4. Indices and tables

https://github.com/davek44/Basset

DeepCpG Documentation, Release 1.0.3

dcpg_train.py
./data/c{1,3,5}_*.h5
--val_files ./data/c{13,14,15}_*.h5
--cpg_model RnnL1
--out_dir ./models/cpg

Train a Joint model using a pre-trained DNA and CpG model:

dcpg_train.py
./data/c{1,3,5}_*.h5
--val_files ./data/c{13,14,15}_*.h5
--dna_model ./models/dna
--cpg_model ./models/cpg
--out_dir ./models/joint
--fine_tune

See Also

• dcpg_eval.py: For evaluating a trained model and imputing methylation profiles.

dcpg_train_viz.py

Visualizes learning curves of dcpg_train.py.

Visualizes training and validation learning from dcpg_train.py. Tensorboard is recommended for advanced visualiza-
tion.

Examples

dcpg_train_viz.py
./model/lc_train.tsv ./model/lc_val.tsv
--out_file ./lc.pdf

Library

Documentation of DeepCpG library.

callbacks

class deepcpg.callbacks.PerformanceLogger(metrics=[’loss’, ‘acc’], log_freq=0.1, precision=4,
callbacks=[], verbose=1, logger=<built-in func-
tion print>)

Logs performance metrics during training.

Stores and prints performance metrics for each batch, epoch, and output.

class deepcpg.callbacks.TrainingStopper(max_time=None, stop_file=None, verbose=1,
logger=<built-in function print>)

Stops training after certain time or when file is detected.

4.5. Library 25

DeepCpG Documentation, Release 1.0.3

evaluation

deepcpg.evaluation.cor(y, z)
Compute Pearson correlation coefficient.

motifs

utils

data

Package for reading, writing, and transforming data.

data.annotations

deepcpg.data.annotations.group_overlapping(s, e)

Assigns group index to intervals. Overlapping intervals will be assigned to the same group.

s : list with start of interval sorted in ascending order e : list with end of interval

int array of length len(s) with group indices

deepcpg.data.annotations.in_which(x, ys, ye)

Returns for positions x[i] index j, s.t. ys[j] <= x[i] <= ye[j] or -1. Intervals must be non-overlapping!

x : list of positions ys: list with start of interval sorted in ascending order ye: list with end of interval

numpy array of same length than x with index or -1

deepcpg.data.annotations.join_overlapping(s, e)
Transforms a list of possible overlapping intervals into non-overlapping intervals.

s : list with start of interval sorted in ascending order e : list with end of interval

Tuple (s, e) of non-overlapping intervals

deepcpg.data.annotations.read_bed(filename, sort=False, usecols=[0, 1, 2], *args, **kwargs)
Read chromo,start,end from BED file without formatting chromo.

data.dna

deepcpg.data.dna.int_to_onehot(seqs, dim=4)
Special nucleotides will be encoded as [0, 0, 0, 0].

data.fasta

data.feature_extractor

class deepcpg.data.feature_extractor.IntervalFeatureExtractor
Checks if positions are in a list of intervals (start, end).

static index_intervals(x, ys, ye)

Returns for positions x[i] index j, s.t. ys[j] <= x[i] <= ye[j] or -1. Intervals must be non-overlapping!

26 Chapter 4. Indices and tables

DeepCpG Documentation, Release 1.0.3

x : list of positions ys: list with start of interval sorted in ascending order ye: list with end of interval

numpy array of same length than x with index or -1

static join_intervals(s, e)
Transforms a list of possible overlapping intervals into non-overlapping intervals.

s : list with start of interval sorted in ascending order e : list with end of interval

Tuple (s, e) of non-overlapping intervals

class deepcpg.data.feature_extractor.KnnCpgFeatureExtractor(k=1)
Extracts k CpG sites next to target sites. Excludes CpG sites at the same position.

extract(x, y, ys)
Extracts state and distance of k CpG sites next to target sites. Target site is excluded.

x: numpy array with target positions sorted in ascending order y: numpy array with source positions sorted
in ascending order ys: numpy array with source CpG states

Tuple (cpg, dist) with numpy arrays of dimension (len(x), 2k): cpg: CpG states to the left (0:k) and
right (k:2k) dist: Distances to the left (0:k) and right (k:2k)

data.hdf

data.stats

Computes statistic for binary CpG matrix.

CpG matrix x assumed to have shape

• [sites, cells] for per CpG statistics

• [sites, cells, context] for window-based statistics

data.utils

deepcpg.data.utils.is_binary(values)
Check if values are binary, i.e. zero or one.

deepcpg.data.utils.read_cpg_profile(filename, chromos=None, nb_sample=None,
round=False, sort=True, nb_sample_chromo=None)

Read CpG profile.

Reads CpG profile from either tab delimited file with columns chromo, pos, value. value or bedGraph file. value
columns contains methylation states, which can be binary or continuous.

Pandas table with columns chromo, pos, value.

deepcpg.data.utils.sample_from_chromo(frame, nb_sample)
Randomly sample nb_sample samples from each chromosome.

deepcpg.data.utils.threadsafe_generator(f)
A decorator that takes a generator function and makes it thread-safe.

class deepcpg.data.utils.threadsafe_iter(it)
Takes an iterator/generator and makes it thread-safe by serializing call to the next method of given itera-
tor/generator.

4.5. Library 27

DeepCpG Documentation, Release 1.0.3

model

Package for building and training DeepCpG modules.

model.utils

Model utilities.

Provides functionality for building, training, and loading models.

class deepcpg.models.utils.ScaledSigmoid(scaling=1.0, **kwargs)
Scaled sigmoid activation function.

Allows to change the upper bound of one to any value.

deepcpg.models.utils.add_output_layers(stem, output_names)
Adds and returns outputs to a given layer.

deepcpg.models.utils.evaluate_generator(model, generator, return_data=False, *args,
**kwargs)

Evaluates model on generator.

deepcpg.models.utils.get_first_conv_layer(layers, get_act=False)
Given a list of layers, returns the first convolutional layers.

deepcpg.models.utils.get_objectives(output_names)
Return training objectives for a given list of output names.

deepcpg.models.utils.get_sample_weights(y, class_weights=None)
Given a vector with labels, returns sample weights for model training.

deepcpg.models.utils.load_model(model_files, custom_objects={‘ScaledSigmoid’: <class ‘deep-
cpg.models.utils.ScaledSigmoid’>}, log=None)

Given a list of model files, loads a model.

deepcpg.models.utils.predict_generator(model, generator, nb_sample=None)
Predicts model outputs on generator.

deepcpg.models.utils.save_model(model, model_file, weights_file=None)
Simplifies saving a Keras model.

If model_file ends with ‘.h5’, saves model description and model weights in HDF5 file. Otherwise, saves JSON
model description in model_file and model weights in weights_file if provided.

deepcpg.models.utils.search_model_files(dirname)
Searches for model files in given directory.

Returns model JSON file and weights if existing, otherwise HDF5 file. Returns None if no model files could be
found.

model.cpg

CpG models.

Provides models trained with observed neighboring methylation states of multiple cells.

class deepcpg.models.cpg.CpgModel(*args, **kwargs)
Abstract class of a CpG model.

28 Chapter 4. Indices and tables

DeepCpG Documentation, Release 1.0.3

class deepcpg.models.cpg.FcAvg(*args, **kwargs)
Fully-connected layer followed by global average layer.

Parameters: 54,000 Specification: fc[512]_gap

class deepcpg.models.cpg.RnnL1(act_replicate=’relu’, *args, **kwargs)
Bidirectional GRU with one layer.

Parameters: 810,000 Specification: fc[256]_bgru[256]_do

class deepcpg.models.cpg.RnnL2(act_replicate=’relu’, *args, **kwargs)
Bidirectional GRU with two layers.

Parameters: 1,100,000 Specification: fc[256]_bgru[128]_bgru[256]_do

model.dna

DNA models.

Provides models trained with DNA sequence windows.

class deepcpg.models.dna.CnnL1h128(nb_hidden=128, *args, **kwargs)
CNN with one convolutional and one fully-connected layer with 128 units.

Parameters: 4,100,000 Specification: conv[128@11]_mp[4]_fc[128]_do

class deepcpg.models.dna.CnnL1h256(*args, **kwargs)
CNN with one convolutional and one fully-connected layer with 256 units.

Parameters: 8,100,000 Specification: conv[128@11]_mp[4]_fc[256]_do

class deepcpg.models.dna.CnnL2h128(nb_hidden=128, *args, **kwargs)
CNN with two convolutional and one fully-connected layer with 128 units.

Parameters: 4,100,000 Specification: conv[128@11]_mp[4]_conv[256@3]_mp[2]_fc[128]_do

class deepcpg.models.dna.CnnL2h256(*args, **kwargs)
CNN with two convolutional and one fully-connected layer with 256 units.

Parameters: 8,100,000 Specification: conv[128@11]_mp[4]_conv[256@3]_mp[2]_fc[256]_do

class deepcpg.models.dna.CnnL3h128(nb_hidden=128, *args, **kwargs)
CNN with three convolutional and one fully-connected layer with 128 units.

Parameters: 4,400,000 Specification: conv[128@11]_mp[4]_conv[256@3]_mp[2]_conv[512@3]_mp[2]_

fc[128]_do

class deepcpg.models.dna.CnnL3h256(*args, **kwargs)
CNN with three convolutional and one fully-connected layer with 256 units.

Parameters: 8,300,000 Specification: conv[128@11]_mp[4]_conv[256@3]_mp[2]_conv[512@3]_mp[2]_

fc[256]_do

class deepcpg.models.dna.CnnRnn01(*args, **kwargs)
Convolutional-recurrent model.

Convolutional-recurrent model with two convolutional layers followed by a bidirectional GRU layer.

Parameters: 1,100,000 Specification: conv[128@11]_pool[4]_conv[256@7]_pool[4]_bgru[256]_do

class deepcpg.models.dna.DnaModel(*args, **kwargs)
Abstract class of a DNA model.

4.5. Library 29

mailto:128@11
mailto:128@11
mailto:128@11
mailto:128@11
mailto:128@11
mailto:128@11
mailto:128@11

DeepCpG Documentation, Release 1.0.3

class deepcpg.models.dna.ResAtrous01(*args, **kwargs)
Residual network with Atrous (dilated) convolutional layers.

Residual network with Atrous (dilated) convolutional layer in bottleneck units. Atrous convolutional layers
allow to increase the receptive field and hence better model long-range dependencies.

Parameters: 2,000,000 Specification: conv[128@11]_mp[2]_resa[3x128|3x256|3x512|1x1024]_gap_do

He et al., ‘Identity Mappings in Deep Residual Networks.’ Yu and Koltun, ‘Multi-Scale Context Aggregation
by Dilated Convolutions.’

class deepcpg.models.dna.ResConv01(*args, **kwargs)
Residual network with two convolutional layers in each residual unit.

Parameters: 2,800,000 Specification: conv[128@11]_mp[2]_resc[2x128|1x256|1x256|1x512]_gap_do

He et al., ‘Identity Mappings in Deep Residual Networks.’

class deepcpg.models.dna.ResNet01(*args, **kwargs)
Residual network with bottleneck residual units.

Parameters: 1,700,000 Specification: conv[128@11]_mp[2]_resb[2x128|2x256|2x512|1x1024]_gap_do

He et al., ‘Identity Mappings in Deep Residual Networks.’

class deepcpg.models.dna.ResNet02(*args, **kwargs)
Residual network with bottleneck residual units.

Parameters: 2,000,000 Specification: conv[128@11]_mp[2]_resb[3x128|3x256|3x512|1x1024]_gap_do

He et al., ‘Identity Mappings in Deep Residual Networks.’

30 Chapter 4. Indices and tables

mailto:128@11
mailto:128@11
mailto:128@11
mailto:128@11

Python Module Index

d
deepcpg.callbacks, 25
deepcpg.data.annotations, 26
deepcpg.data.dna, 26
deepcpg.data.fasta, 26
deepcpg.data.feature_extractor, 26
deepcpg.data.hdf, 27
deepcpg.data.stats, 27
deepcpg.data.utils, 27
deepcpg.evaluation, 26
deepcpg.models.cpg, 28
deepcpg.models.dna, 29
deepcpg.models.utils, 28
deepcpg.motifs, 26
deepcpg.utils, 26

s
scripts.dcpg_data, 19
scripts.dcpg_data_show, 21
scripts.dcpg_data_stats, 21
scripts.dcpg_download, 22
scripts.dcpg_eval, 22
scripts.dcpg_eval_export, 23
scripts.dcpg_filter_act, 23
scripts.dcpg_filter_motifs, 24
scripts.dcpg_train, 24
scripts.dcpg_train_viz, 25

31

DeepCpG Documentation, Release 1.0.3

32 Python Module Index

Index

A
add_output_layers() (in module deepcpg.models.utils), 28

C
CnnL1h128 (class in deepcpg.models.dna), 29
CnnL1h256 (class in deepcpg.models.dna), 29
CnnL2h128 (class in deepcpg.models.dna), 29
CnnL2h256 (class in deepcpg.models.dna), 29
CnnL3h128 (class in deepcpg.models.dna), 29
CnnL3h256 (class in deepcpg.models.dna), 29
CnnRnn01 (class in deepcpg.models.dna), 29
cor() (in module deepcpg.evaluation), 26
CpgModel (class in deepcpg.models.cpg), 28

D
deepcpg.callbacks (module), 25
deepcpg.data.annotations (module), 26
deepcpg.data.dna (module), 26
deepcpg.data.fasta (module), 26
deepcpg.data.feature_extractor (module), 26
deepcpg.data.hdf (module), 27
deepcpg.data.stats (module), 27
deepcpg.data.utils (module), 27
deepcpg.evaluation (module), 26
deepcpg.models.cpg (module), 28
deepcpg.models.dna (module), 29
deepcpg.models.utils (module), 28
deepcpg.motifs (module), 26
deepcpg.utils (module), 26
DnaModel (class in deepcpg.models.dna), 29

E
evaluate_generator() (in module deepcpg.models.utils),

28
extract() (deepcpg.data.feature_extractor.KnnCpgFeatureExtractor

method), 27
extract_seq_windows() (in module scripts.dcpg_data), 20

F
FcAvg (class in deepcpg.models.cpg), 28

G
get_first_conv_layer() (in module deepcpg.models.utils),

28
get_objectives() (in module deepcpg.models.utils), 28
get_sample_weights() (in module deepcpg.models.utils),

28
group_overlapping() (in module deep-

cpg.data.annotations), 26

I
in_which() (in module deepcpg.data.annotations), 26
index_intervals() (deep-

cpg.data.feature_extractor.IntervalFeatureExtractor
static method), 26

int_to_onehot() (in module deepcpg.data.dna), 26
IntervalFeatureExtractor (class in deep-

cpg.data.feature_extractor), 26
is_binary() (in module deepcpg.data.utils), 27

J
join_intervals() (deepcpg.data.feature_extractor.IntervalFeatureExtractor

static method), 27
join_overlapping() (in module deepcpg.data.annotations),

26

K
KnnCpgFeatureExtractor (class in deep-

cpg.data.feature_extractor), 27

L
load_model() (in module deepcpg.models.utils), 28

M
map_cpg_tables() (in module scripts.dcpg_data), 20
map_values() (in module scripts.dcpg_data), 20

P
PerformanceLogger (class in deepcpg.callbacks), 25
predict_generator() (in module deepcpg.models.utils), 28

33

DeepCpG Documentation, Release 1.0.3

prepro_pos_table() (in module scripts.dcpg_data), 20

R
read_bed() (in module deepcpg.data.annotations), 26
read_cpg_profile() (in module deepcpg.data.utils), 27
read_cpg_profiles() (in module scripts.dcpg_data), 20
ResAtrous01 (class in deepcpg.models.dna), 29
ResConv01 (class in deepcpg.models.dna), 30
ResNet01 (class in deepcpg.models.dna), 30
ResNet02 (class in deepcpg.models.dna), 30
RnnL1 (class in deepcpg.models.cpg), 29
RnnL2 (class in deepcpg.models.cpg), 29

S
sample_from_chromo() (in module deepcpg.data.utils),

27
save_model() (in module deepcpg.models.utils), 28
ScaledSigmoid (class in deepcpg.models.utils), 28
scripts.dcpg_data (module), 19
scripts.dcpg_data_show (module), 21
scripts.dcpg_data_stats (module), 21
scripts.dcpg_download (module), 22
scripts.dcpg_eval (module), 22
scripts.dcpg_eval_export (module), 23
scripts.dcpg_filter_act (module), 23
scripts.dcpg_filter_motifs (module), 24
scripts.dcpg_train (module), 24
scripts.dcpg_train_viz (module), 25
search_model_files() (in module deepcpg.models.utils),

28
split_ext() (in module scripts.dcpg_data), 21

T
threadsafe_generator() (in module deepcpg.data.utils), 27
threadsafe_iter (class in deepcpg.data.utils), 27
TrainingStopper (class in deepcpg.callbacks), 25

34 Index

	Installation
	Examples
	Documentation
	Indices and tables
	Python Module Index

